Magnetic Properties of the Dioxime Complex

2,3-Diamino-1,4-diazabuta-1,3-diene-1,4-diol-bis(2,3-diamino-4-hydroxy-1,4-diazabuta-1,3-dien-1-olato)cobalt(1)

Takahiro Hirotsu,* ^a Norio Takagi, ^a Jitsuo Sakakibara, ^a Shunsaku Katoh ^a and Manabu Senō^b

^a Government Industrial Research Institute, Shikoku, 2-3-3 Hananomiya-cho, Takamatsu 761, Japan
^b Institute of Industrial Science, The University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

Crystals of the title complex in the low-spin state (S = 1/2) exhibit one-dimensional ferromagnetic interactions along the *b*-axis.

The development of magnetic interactions in metal-ion complexes with a stack arrangement is of interest in exploring the design of organic ferromagnetic compounds. Metal-ion complexes with glyoximes are well known to possess a variety of stack structures;¹ however their magnetic properties have not been examined in detail. In this study, we report that the title compound, $[CoL_2(HL)]$, with a slipped-stack arrangement is an S = 1/2 1-D ferromagnet along the stacking axis.

[CoL₂(HL)] was obtained in 35–40% yield as dark purple crystals from a warm aqueous solution (100 cm³) containing [Co^{II}(OAc)₂)·4H₂O (10 mmol) and the dioxime HL (20 mmol) under nitrogen,² and its composition was confirmed by IR spectroscopy and elemental analyses to be [Co^{II}(C₂H₅-N₄O₂)₂(C₂H₆N₄O₂)]. The complex is monoclinic, space group C2/c and its structure consists of chains of planar Co^{II}L₂ units stacked along the *b*-axis, through long Co–N bonds to terminal N atoms of the adjacent molecular units; the stacked chains form sheets in the *bc* plane.²

The ESR behaviour of $[CoL_2(HL)]$ crystals was examined over the temperature range 123–298 K. The spectra were characterized by the combination of a broad absorption band centred at an average g value (g_{av}) of 2.35 with a very weak but distinct hyperfine splitting (hfs) pattern centred at a g_z value of 2.012, which results from the interaction of the unpaired electron with the ⁵⁹Co nucleus (I = 7/2), with $A_{Co} = 12$ mT. The absence of any hfs signal from ¹⁴N (I = 1) nuclei on the apical sites means that the interaction between the Co and the N atoms is as weak as in the case of Co^{II}(Hdmg)₂ (H₂dmg = butane-2,3-dione dioxime) in frozen water and alcoholic solvents and much weaker than that observed in strongly coordinating media like pyridine.³ The g_{av} value of 2.35

remains constant over the above temperature range, while the hfs signal centred at $g_z = 2.012$ weakens significantly with a decrease in temperature. Provided that the system is isotropic, the *S* value can be estimated through the relationship $\mu_{eff}/\mu_B = g[S(S + 1)]^{1/2}$, where μ_{eff} is the effective magnetic moment. If a μ_{eff} value of 2.05 μ_B , as described below, and $g = g_{av} = 2.35$, the *S* value is calculated to be 0.505, which is consistent with the S = 1/2 ground state, *i.e.*, the low-spin state.

The magnetic properties of [CoL2(HL)] crystals were examined by means of a Squid magnetometer at 2-100 K and a VSM instrument at 77–298 K. $\mu_{eff} = 2.05 \mu_B$ at 298 K, consistent with the values of Co¹¹ complexes with a squareplanar coordination geometry. The magnetic data are plotted as $\chi_m T$ (χ_m = molar magnetic susceptibility, T = temperature) vs. T in Fig. 1. A marked rise in $\chi_m T$ at temperatures lower than 50 K indicates the transition to a phase with dominant ferromagnetic interactions. It is shown on the basis of crystallographic information on [CoL₂(HL)] that this result could be reasonably interpreted in terms of a dominant ferromagnetic spin-ordering within the stack chain along the b-axis and a secondary antiferromagnetic interaction between the chains in the bc plane. Thus, we assume tentatively the isotropic S = 1/2 Heizenberg model based on a high-temperature Padé expansion (eqn. 1),4 modified by the addition of a mean-field correction (eqn. 2) to account for the interchain interactions,⁵ where K = J/2kT; J is the ferromagnetic

$$\chi_{\rm m}'T = (N \ \mu_{\rm B}^2 g^2/4k) [(1.0 + 5.79 \ 9916 \ K + 16.902 \ 653 K^2 + 29.376 \ 885 K^3 + 29.832 \ 959 K^4 + 14.036 \ 918 K^5)/(1.0 + 2.797 \ 991 \ 6$$

$$29.832 959K^{4} + 14.036 918K^{5})/(1.0 + 2.797 991 6K + 7.008 678 0K^{2})$$

$$+8.653\ 864\ 4K^{3}\ +\ 4.5/4\ 311\ 4K^{4})]^{2/3} \tag{1}$$

$$\chi_{\rm m}({\rm corr}) = \chi_{\rm m}' / [1 - (2ZJ'/Ng^2 \,\mu_{\rm B}^2) \,\chi_{\rm m}']$$

coupling constant, Z is the number of nearest-neighbour chains (Z = 2 in this study), J' is the exchange integral for the magnetic interaction between the nearest-neighbour chains, and the other symbols have their usual meanings. The parameter values were determined to be consistent with the observed results in Fig. 1 as follows: J = 9.04 cm⁻¹ and J' =-0.005 cm⁻¹ at temperatures 10–298 K with a value of $g = g_{av}$ = 2.35. The good agreement indicates the existence of ferromagnetic intrachain interactions along the b-axis accompanied by a very weak interchain antiferromagnetic interaction in the bc plane. The principal mechanism of superexchange could operate through the interaction of the Co d_{2} (the highest partially occupied magnetic orbital) with the two apical N atoms which form the π systems of the adjacent complex molecules along the stack chain, similar to the $(pda)Cu(ox)_2$ system (pda = propylenediammonium; ox =oxalate).6

Received, 30th May 1990; Com. 0/02421J

References

(2)

- 1 B. M. Hoffman, J. Martinsen, L. J. Pace and J. A. Ibers, in *Extended Linear Chain Compounds*, vol. 3, ed. J. S. Miller, Plenum Press, New York, 1983, ch. 10.
- 2 Ö. Bekaroglu. S. Sarisaban, A. R. Koray and M. L. Ziegler, Z. Naturforsch., Teil B., 1977, 32, 387.
- 3 W. Lubitz, C. J. Winscom, H. Diegruber and R. Moseler, Z. Naturforsch., Teil A, 1987, 42, 970, and references cited therein.
- 4 G. A. Baker, Jr., G. S. Rushbrooke and H. E. Gilbert, *Phys. Rev.* A., 1964, **135**, 1272.
- 5 D. D. Swank, C. P. Landee and R. D. Willett, *Phys. Rev. B*, 1979, **20**, 2154.
- 6 D. R. Bloomquist, J. J. Hansen, C. P. Landee, R. D. Willett and R. Buder, *Inorg. Chem.*, 1981, **20**, 3308.